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RELATIVE SYHHETRIES OF DIFFERENTIAL EQUATIONS

B. A. Kupershmidt+

Dtipartment of Hnthematics
University of Michigan

Ann Arbor, MI 48109, U.S.A.++

Let A: ~mv+J=n bea differential operator, where Jmv
(resp. J~ is the infinite-jetlbundle of the bundle v :
F+H(re6p. n-E+H). Let Iv be the Carta~ submogulg
of the module A4(KV) of l-forms over the ring Ku =C (Jv).
Among ●ll derivat”onn of K into K alonu A*, we classify
those which map I i into I:! They ~urn out to be quasi-
●volution equatio!a.

1.INTRODUCTION

Let n :E+n,v : F + ~ be bundle6 (smooth, like ●verything ●lse in the paper).

Let nk : Jkn + H, n
IIbl ;

Jkn + Jgn be the corrernponding jet bundlee, denote Jmn =

limproj Jkn, K%= C (J n) = li~ ~“d Cm(Jkn), Let ~ ; JBU + Jon = E be ● bundle

❑sp (over H), which can be thought of as ● differential operator ~ : r(v) + r(n),

where r(v) denotes the mheaf of sections of the bundl~’ u : Z(y) ~ i*(jB(V)(y)),

~ycr(v), wherejs = ja(v) : r(v) + r(vm) denotea tht natural lift. Tang~nt

planes to graphs [j (y)(H) lycT(v)) form the Cartan distriiwtion in Jkv. Its
d

●nnihilator in A (J V) im the k-th Cartan aubwdule Ik(v). The Csrtan aubmodulc

I](v) in A](v) ■ A1(Jmv) = lim ind A)(Jkn) ic d~”ined by the formula ll(v) = lim

ind Ik(v), Let us denote by A the natural lift of ~ into Jmv, L : Jmv +

Jmn. Then A*(I~)C I: (lefmnil 11 2.14 [3]).

We consider the following problem: find the set~qev (A) of ●ll dr, ivation~

z:
1

Kn + XV ●lor8 the homomorphism A*, which ❑ap ]: into I There arc ● t least
v“

three ~otivttionn for this problem:

A. In the came n = V, A R id, the ●et of all •~~h z’- is the -et of ●volutior,

derivations ~ev(n); in local coordinate-, the ●quationo of trajectories of the-r

●volution derivation ● re ●volution equation- (Proposition 1 [2]; Theorem 1

5.6 [3]). (In the en~ineerinu litera~ure, these derivation paos under the

■itleadjng nam “Lie-Bh’cklund trrnoforuations”. )
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B. Such Z’a ●riae in practice ● s the “generalized Mine-Gordon equations” asso-
ciated with classical simple complex Lie ●lgebras ([4], [6]) and ●ven with Xac-
tloody Lie ●lggbras ([1]).
c. Let UC J n be ● closed set considered ● s a differential ●quation: ycr(n) is

● solution if (jk(y))(tl)C U. Let UC Jmn be the infinite prolongation of U.

Then the s~etries of ~ ● re those evolution derivations X&DeV(n) which preserve

the ideal ?(U) of functions from Km vanishing on U. Suppose, however, hat
r.

fi~ Jmv is ●nether ●quation &nd A(~)C fi. Then more general symmetries of O

will be those Z’s which map f(fi) into $(~). That such relative synsnetrirs arr
useful was demonstrated in ● spectacular tour-de-force by Vinogradov ●nd
Krasil’shchik who used nonlocal ●ymnetriea to compute all (absolut~) symmetries
of the Korteweg-de Vries ●quation ([5]).

2CIMSIFICATION

Denotu by~(nm) the Kn-module of derivations of Cm(H) into Xn clong n:, where

nm : Jmn + H ia t’e natural projection. Note thut S(nm) ia 8enerated over K
n

by the Lie ●lgebra ~(~) of vector fields on t!. If X &a(n=) then Its lift ~“=

in C$(Kn) into the Lie ●lgebra of derivations of Kn is uniquely defined by the

universal property je(y)*l = j1(7)* Xjm(y)*,Yy~T(~l), where Q in such that

X(C’’(tf))C Cm(J%). The set of ●ll such ~’e ir denoted byn(nm) ●nd is a Lie

●lgebra and ● Xn-module (Theorem I 3.6 [3]). The amihilator ofa~) in A1(Kn)

ia nothing but the Cartan oubmodule l;. [This IS the definition of t’e Cartan

●ubmodule; the fact that the corresponding distribution la spanned by ti~e
tangent planea of graphu of jets of sections of n is ● corollzry (Theorem I
4.4 [3]).]

If X~2(ll) then the lifts iv ●nd in arc A-related: ~vA’$ = A*~fl (Le~a 11

2.13 [3].; Obviously, if Xe~(nm), then ●gain therr ●xints a unique iv c~(vm)
*.

such that ~vA* = A Xn; the resulting map ~(nm) + Mvm) ~m ● Lie ●l~ebra homu-

●orphiam,

Lemoa 2.1. Let @ : K1 + K2 be s homomorphism Gi comuutmtive rings F] and—-— .

K2 , Let Xle ~(K1) and X2* S9(K2) be two $-related derivations. Lets($) hr

aK -module of derivatlonn of K] into K2 ●long $. Then for ●ny Z6~(@),

(X2; - 2X1) Ca($).

Proof . Obvious.

Recall thst If WCA](K), X,2 cS(K), then the LiP der~vat~ve of KI w~th rr~pr’1
to Z is defin~d by the fomula IZ(W)l(X) = Z(U(X))-U(IZ,X]).

Lema 2.2. ]n the notationa of lema 2.1, s(+) acta by derivations—.

●long + on A](K,) with values in A](K2). In particular, for LAWA](K,)

IZ(U’)I(X2)■ z(w(xl)) - U(zxl-l$z) , (2,3)

where on the risht hand side the pairins between A1(K ) ●nd 8(*) is uriders~~od
(fds)(Z) ■ O(f)Z!s) ,VftwK1.

1
naturally :
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A8ain, the proof is obvious.

Now we can handle the problem of classification of ●lements ofS q=’’(b) . Let.

Z6aq=v(A), that is, Z(I~)C ll. Take my UJ c I: = Ann@(n=)). Then Z(UJ) t

●I: = Ann@!i)) = Arln@Ol)u) if:,vxml), [Z(w)l(iv) = 0. By formula (2.3),

this is ●quivalent to O = Z(u~(lZ)) - uJ(Zfi=-IxZ). But @ = O since WI;.

Thus (Zfin-~vZ) must belong to the kernel of l:, that is, we must hav~

(2.4)

Theorem 2.5. Every Z~qev(A) is uniquely defined by its value Znn~ o. Con-

versely, any derivation @nm o A) is uniquely llfted ins($) LO be~ome

Z~qev(A), such that Z-n: o = %
)

Proof, To study (2.4), first notice that, like in the absolute case
(n=v,A= id), one has ● direct rum decomposition

~(A) = S= ‘A* ● S(A)vert , (2.5)

where a(A)vert : = {2CS(p)l Z*n~ = 0], ●nd decomposition (2.6) is provided by

the formula Z = (Z”n~W”A’” +[2 - (~JV”A’”]. Since Z.n~@m) =

S(A) I , then 21 : = (2.n~)v&SXvm) ●.ld (2.4) icr Z = 21A* is obviously
cm(n)

catiafied. Therefore we sihali restrict ourcelves to vertical Z’fi c~(d)vert
only.

Let (Xi, . . ..Xm ) be local coordinates in H, (q~la = 1,. . . dlm E - dim M, u~~}

be standard local coordi.1’tes on Jmn, ●nd (p~lb = 1,. . . . dim F-dim ~, CJCZ~] be

local coordinates on .]mv. Let, 10CS11Y, Z : ~~A*
8

—, A;cKV. It is ●nough
aq:

to check (2.4) for the baais vector fields X = ~:– Cs(!’1). Since (*) =
i in

a + qq 8
q — funin~ biumation owr repeated indices])we have

‘i tlq;

-(+h +)(A>*
*-F —-5-) = lsince n (0=) = (a:.-) ] =

i + ‘w ~},p 8q: in i“



---

= {[-(:) (As) +A~i]A*% .

lV
aq:

This ltst ●xpression ❑ ust belong to KvA*S~n. Since there are no components

•lon~ H, it ● ust vanish, ●nd this happens iff A~+i = (Di)v (A;), where (D.)
lV

‘1 o

stands for (~/~xi)v. Thus, A; = (D”)v(As), (D”)v: = (D. )V ..O (Di )V ‘, and
11 ❑

Aa’m ● re ●rbitrary.

3TRAJECTORIES

Ordinary differential ●quations ● re ●quationc of trajectories of vector fields
on ❑anifolds. Analogously, ●volutien cquationz sre ●quations of trajectories
of vertical evolution derivations (Theorem 1 5.6 [3]). (The reason for con-
sidering only vertical fields is explained in $1 5.3 [3]: for nonvertical

‘eV(A), ●nd consijerfields, ●quations become overdetexuiined.) Now let Z tS
Z to be vertical. A trajectory of*Z is a one-parame~er (t) family of sections

Y = y(t) :?f+ F such that [j(v)(y)]”Z = ~“[j(n)(Ay)] . Let us find a coordinate

version of the last equation. Let locally Z = (D”)v(Aa)oA* aia$. Then O =

[j(V)(Y)]:Z - ~O[j(n)(Ay)]* =

= [j(v)(Y)]* {l(D”)v(Aa)]A* ~ ) - (~[(q~)’+(A~)l-lj(~)(A~Jl* ‘a =
aq~ aqo

= D“([j(v) (y)]*(Aa))*lj(n) (AY)I*A - {& D”([j(n)(Ay)l*(qa))}* [j(n)[Ay) 1’”’~
aq; 3qo

o — ‘1
where D : = (8/aXi) “o” (ami )Umm Since [a/at,n”] = O, the ●bove ●qublity

m
is reduced to

~ {[j@)(AY)]* (q.)) = [W)(Y)I* (As) . (.1,1)

Thuo we obtain the coordinate frrm of quasievolution equations.

Remark 3.2. In contrast to the ●volution ●quations, quasievol~t ion on?s
need not be formally integrable. Obviously, integrability of a generic 2,

depenam only upon A. I conjecture that this integrability depends cnly upor)

d~mensions ●nd codimenoions of th~ finite number of prolon8ationB of thr mal~ fi :.— —
Jv+E.
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