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RELATIVE SYMMETRIES OF DIFFERENTIAL EQUATIONS
B. A. l(upershmidt+

Department of Mathematics
Urniversity of Michigan

Ann Arbor, MI 48109, U.s.A.*"

Let A : gmv + 3% be s differential operator, where v
(resp. J90) is the infinjte- jet’bundle of the bundle v :
F+ M (resp. m ; E~+MN). Let 1v be the Cartan submogulg
of the module A (K ) of 1-forms over the ring K C (I wv).
Among all derivnt‘onu of K into K along A%, we classify
those which map I into I They Yurn out to be quasi-
evolution equations

4INTRODUCTION
Let mn : E~M, v:F -+ Mbe bundles (smooth, like everything else in the paper).
Let me ! Jkn + M, M gt Jkn - Jln be the correlponding Jet bundles, denote In =

(- 3 -
lim proj J%n, Ke=C (J ®n) = lim ind CC(3"n). Let & : J% + 3% :

= E be a bundle

map (over M), whzch can be thought of as a differenlial operator A : T(v) = T(n),
where (v) denotes the sheaf of sections of the bundlve v : Z(y) = 5-(j'(u)(y)),
Vycr(v), where j. = j'(v) : T(v) » T(U') denotes the navural lift. Tangent

(y)(M)|yer(v)} form the Cartan distritution in Jku. 1ts
annihilator in A (th) is the k-th Cartln subuodule 1 (v) The Clrtan submodule
1 (v) in A (V) = A J v) = lim ind A (J n) is dv ined by the formula 1 (v) e lim
ind 1 (v) Let us denote by A the natural 1ift of A into J v, & : J v -+

’n. Then A (I )< I (lemmo I1 2.14 [3))

planes to graphs {j

We consider the following problem: find the let!f"w(A) of a)ll dei.ivations

Z Kn + Kv alorg the homomorphism A*, which map 1; into Ii. There are at least
three wmotivations for this problem:

A. Io the case nm = v, A= id, the set of all such Z's is the set of evolution
derivations bev(n); in local coordinates, the equations of trajecturies of thesc
evolution derivationt are evolution equations (Proposition 1 [2]; Theorem 1

5.6 {3])). (lo the enginecering literature, these derivations pass under the

misleading name "Lie-BAcklund trrnsformations’.)
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B. BSuch Z's arise in practice as the '"generalized sine-Gordon equations" asso-
ciated with classicsl simple complex Lie algebras ({4]),]|6)) and even with Kac-
Moody Lie llgEbras ([1)y.

C. Let UC J'n be a closed set considered as a difterential equation: yel(n) is

s solution if (jk(y))(H)c U. Let U € J”n be the infinite prolongation of U.
Then the symmetries of U are those evolution derivations XeD®' (n) which preserve
the ideal.f(U) of functions from K vanishing on U. Suppose, however, . hat

Ve J vV is snother equation &nd A(V)C U. Then more general symmetries of U

will be those 2's which lap?(U) into F(V). That such relative symmetrirs are
useful was demonstrated in a spectacular tour-de-force by Vinogradov and
Krasil'shchik who used nonlocal symmetries to compute all (absolute) symmetries
of the Korteweg-de Vries equa%ion ([5])).

2.CLASSIFICATION

Denote bya(nw) the K"-nodu]e of derivations of CO(H) into Krt clong n:, where
n, J°n + M is t'e natural projection. Note that a(nw) is generated over k;

by the Lie algebra ®(M) of vector fields on M. If X cub(nm) then its lift X =
x 1:9(K ) into the Lie llgebn of derivutions of K is uniquely defined by the
univerlal prOperty Jo (y) x = j (y) Xi, (y) ,\/ycr(n), where £ is such that
xc”m) e W n) The set of all such X's is denoted by!b(n ) and is a L1e
algebra and a K emodule (Theorem I 3. 6 [3]). The annihilator of.b(nm) in A (Kn)
is nothing but the Cartan submodule 1 [This 18 the definition of t'e Cartan

submodule; the fact that the correlponding distribution is spanned by the
tangent planes of graphs of jetr of sections of M ia a corollsry (Theorem I
4.4 |31).])

- - - % *-
If X&@ (M) then the lifts XU and Xn are OA-related: XvA’ z A Xﬂ (Lemma 11
2.13 [3).) Obviously, if Xea(nn), then again there exists s unique iv cb(\)")

- ok *.
such that va = A X"; the resulting map b(nu) - IXvu) is a Lie algebra homo-

sorphism.

vemma 2.1. Let ¢ : Kl - Kz be a homomorphism ¢f commutative ringa Kl and
K,, let X = 3(1(1) and X, ¢ B(K,) be two 9-relaied derivations. Let D(9) be
a Kz--odule of derivations of Kl into I(2 along ¢. Then for any Z2eDd(9),

(Xzz - le) t ().
Proof. Obvious.

Recall that if chl(K). X,2 £B(K), then the Lie derivetive of w with respect
to 2 is defined by the formula [Z(w)](X) = Z(w(X))-w([Z,X]).

Lemma 2.2. In the notations of lemma 2.1, B(9) actx by derivations
along ¢ on A‘(Nl) with values in Al(Kz). In particular, for wcAl(Kl)
[Z(w) (X)) = Z(w(X,)) - w(ZX,-X,2) , (2.3)

where on the right hand side the pairing between A (K ) and 5(9) is unders: nod
naturally : (fdg)(Z) = ¢(f)2'g) , Vf..ckl
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Again, the proof is obvious.

Now we can handle the problem of classification of elements ofi)qev(A). Let
z tsqu(A), that is, Z—(I.l)c l Take "ny w ¢ I‘,lI = Ann(S(_T:)). Then Z2(w) ¢

tI = An@(v ) = Ana (M) ) iff,VXcS(H), [Zw)](X,) = 0. By formula (2.3),
thil is equivalent to 0 = Z(m(iﬂ)) - w(Zit-iXZ). But w(iz) = 0 since ch;
Thus (Zin-in) must belong to the kernel of I;, that is, we must have

- - e e
(2X -X 2) € K ADM)_, Vxed(M) . (2.4)
qev . . . *
Theorem 2.5. Every Ze®»® (A) is uniquely defined by its value Z-n_ o Con-

versely, any derivation i&:{n“ oA) is uniquely lifted in ®(¢) to become
* A
quQEV(A), such that Z.n_ = Z.

Proof. To study (2.4), first notice that, like in the absolute case

2

(n = v, A= id), one has a direct sum decomposition

D) = Bv_) A" eyt (2.5)
uhere'ib(A)Vert ! ab(p)IZ n = 0}, and decomposxtxon (2 6) is provided by
2

the formula 2 = (Zn.)OA +[2 - (Z'n )°A] s:necha@)-

D) |  then Z. : = (Z-n°) v ) aad (2.4) ior Z = ZA is obviously
C (M) 1 @’y e 1

catisfied. Therefore we shal: restrict ourselves to vertical Z's €3(a)

only.

vert

Let (xi,...,xm) be local coordinates in M, {q;|| =1,... dam E - dim M, OLZT}
be standard local coordi. :tes on Jun. and [pzlb =1,..., dim F-dim M, ncZT] be
o Y R - a
local coordipates on 1 v. Let, locally, Z2 = onA — AocKU. It is enough
qu .
to check (2.4) for the basis vector fields X = 5—2— eDM). Since (5—2-)
i in
R + g3 N (using swmation over repeated indices) we have
Ox U5+ 4 8q" 6 )
qO
a 2] d b 2]
2, - Xz (AL =0 (G- %, —p)
8q i 8q
I &
* * B
-G e ph Bt B e faince AT (G) = (o) ] =
§ Hti B\b o Ba® 8‘1 X
Py % n v
) 9,
= - 1G) (ania e AT g 1) e
X 8q 8q® 3
Y a (¢} n



_.q-

- 3 a a ¢ 3
= {[-(ax) (Aa) + Ao"‘I]A .} .
i 3q

v (o]

iy
This last expression must belong to K“A.S(H)n. Since there are no components

. . a a
along M, it must vanish, and this happens iff Ao*i (Di)v (Ao), where (Di)v

ol o
(D, )
1 v e ag 1
1 m

stands for (3/3x.) . Thus, A = (DO)V(A'), (n°)v:

A''s are arbitrary.

A TRAJECTORIES

Ordinary differential equations are equatioont of trajectories of vector fields
on manifolds. Analogously, evolution ecquations are equations of trajectories

of vertical evolution derivations (Theorem 1 5.6 {3]). (The reason for con-
sidering only vertical fields is explained in §I 5.3 [3]: for nonvertical
fields, equations become overdetermined.) Now let Z cs)qev(A), and consider

Z to be vertical. A trajectory of,Z is_a one-paramefer (t) family of sections

y = y(t):M » F such that [j(Vv)(y)]eZ = 5I°lj(n)(Ay)] . Let us find a coordinate

*
version of the last equatjon. Let locally Z = (Do)v(A')-A 8/8q;. Then 0 =
* ) _ *
[3(»(V)])e2 - z=eli(m(ay)] =

= [J(v)(y)]* {[(D°)v(A")]A* —9;} - (g;l(q;)*(Ay)l-lj(n)(Av)]* -2; =
3q, 9q,
%I ) m e - & pdmen) @ menn 2
99, 94,
o o1 —— O o
where D : = (8/8li) (B/Bxi ) Since [8/8t,D7] = 0, the above equsality
m

is reduced to

2 mGNIT @) = ;T @) . (3.1)

Thus we obtain the coordinate fcrm of quasievolution equations.

Remark 3.2. In contrast to the evolution equations, quasievoliutinn ones
need not be formally integrable. Obviously, integrsbility of a generic 7
depenas only upon A. I conjecture that this integrability depends cnly upon _
d‘lenlionl and codimensions of the finite number of prolongations of the map A :
Jv - E.
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